
Convolution operation 

Introduction 

The intention of this work is not to explain how convolution and pooling operations work. There are a lot 
of incredible blogs on those, I mention here the two most intuitive in my opinion.  

The intention is to make familiar with how I use to represent those operations in the rest of the works on 
this blog. 

[1] – Andrey Karpathy explanation on Official Stanford CS231 Course on CNNs for Visual Recognition 

[2] – Dumoulin and Visin paper on Convolution and Pooling Arithmetic for Deep Learning  

[3] – Jiaxin Wu perfect detailed work on the math behind convolutions and pooling 

 

Convolution 

Let’s start with the simplest case. The first thing to have in mind is that an input volume is normally 
convolved with several different kernels. Why? Because we expect each different kernel to extract 
different features from the input image. Now we will see only 1 filter to the expand to the feature maps 
space. 

Simple Convolution – 1 filter  

The convolution operation simply consists on passing a kernel over an input volume, which is the image. 
On this pass, the values of the image that matches the size of the kernel, perform a matrix multiplication 
between them two, to provide the value of 1 cell on the output volume. In the Figure 1, the first shaded 
cell in the output will be the result of the matrix multiplication of the blue shaded matrix in the input 
volume with the convolutional kernel in yellow. 

 

Figure 1. Convolution – 1 kernel, stride 1, no padding 

Stride 

The kernel then slides in the right direction until it reaches the last position. If we slide 1 by 1, called stride 
of 1, the total positions that the kernel can take is 4. This determines the dimension of the output volume. 

http://cs231n.github.io/convolutional-networks/
https://arxiv.org/pdf/1603.07285.pdf
https://pdfs.semanticscholar.org/450c/a19932fcef1ca6d0442cbf52fec38fb9d1e5.pdf


If the stride is increased to 2, then it could only make 2 positions, as shown in Figure 2. The first position 
will be the same shaded area as in Figure 1, and the second position the shown in Figure 2. 

 

Figure 2. Convolution – 1 kernel, stride 2, no padding 

There will be many occasions where we would like the output volume to have the same size as the input 
volume. Why so? Well, normally convolutional neural networks tend to be very deep. Therefore, we need 
not to decrease the volume at every convolutional layer, because we will end up with very small volumes 
very soon, not being able to capture the features we are interested in. 

What can we do to achieve this? 

Padding 

Padding is a technique that simply adds zeros to the margin of the image to increase its size. More 
precisely, the padding required to achieve the same volume on both side of the convolution is intuitively 
called Same Padding. 

Figure 3 represents this. The stride is equal to one, but with the padding, the input gets to be 7 instead of 
the original 5, leading to an output size of 5. 

 

 

Figure 3. Convolution – 1 kernel, stride 1, padding 1 

We can summarize the behavior of the output size with: 

𝑂 =  
𝐼 + 2𝑃 − 𝐾

𝑆
+ 1 



Feature maps 
Let’s take a look at Figure 4 for a better idea on what the kernel is actually doing on the image to expand 
later to several kernels. 

 

Figure 4. Convolution 2D with 1 Kernel 

The main idea that you need to see is the 2D after the convolution in the name on the operation. We 
normally use kernels which channels’ dimension match the input volume’s one. Therefore, as can be 
appreciated in the Figure 4, 1 convolutional kernel will lead to a 1D plane output volume. 

When we apply several convolutional kernels, each of them will stack another (and different) output 
volume, with different features activated. This is the reason why some kernels are called edge detectors, 
corner detectors… because the values on the kernel allow to capture the features that are represented 
by and edge, corner… This can be seen in Figure 5, where each kernel is leading to one feature map in 
the output volume. This is why the number of filters determines the channel size dimension when you 
are implementing your convolutions in code. 

 

Figure 5. Convolution 2D with several kernels 
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