
Neural Networks – The Graph Approach 
 

1. Introduction 

As in the previous parts, we will be working with the same neural network structure.  

 

 

 

As we have seen in the learning paragraph of the first chapter, the neural networks 
update their weights based on the error committed by forwarding the inputs and 
comparing these values with the ‘actual values’, or what these outputs should have 
been. 

Mathematically, we compute the gradient of these errors, and update the weights as 
follows: 

𝑊𝑖(𝑘 + 1) =  𝑊𝑖(𝑘) − 𝜆𝑖 ·
𝑑𝐽

𝑑𝑊𝑖
(𝑘) (Eq.  1) 

To train neural networks we need to provide them with large amounts of data, so the 
process of try, check the error and learn from it can be iterated as much as possible 
(without overfitting!) 

To make this computationally feasible, the calculations rely on a graph approach as we 
will see in this chapter.  

To make things easy, we will work on the same networks. Let’s decompose it into a 
graph!  
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2. Graph Representation of Neural Networks 

The time has come to discover how our neural networks are behaving. If you have ever 
used a machine learning framework like TensorFlow or Keras (links), what we are going 
to do is trying to identify what is behind that few lines of code that simplifies your life. 

Well, believe it or not, our friendly neural network we have been working with is exactly 
like in Figure 1 is represented. But don’t worry, we will split in into smaller pieces to 
make sure we understand every component and, at the end, we will code it ourselves! 

Figure 1. Graph representation of out [2, 3, 1] neural network. 

 

Let’s have a first look an identify what is every shape and colour: 

Yellow boxes are variables. X is the input, Y is the output what the output of the forward 
process should be; and J is the error between the real output and Y.  

Blue shapes correspond to mathematical operations between the layers. They are 
basically functions, but some of them are just an addition or a multiplication, so in those 
cases we just see the sign.  

Now we can go to last chapter and refresh how we were doing the forward process by 
the several steps of multiplying the different matrices. Let’s write down the equations 
we can infer for the graph and check if they agree with our previous knowledge. 

 

𝑋𝑊1 = 𝑋 ∗ 𝑊1 (Eq. F1) 

z2 = 𝑋 ∗ 𝑊1 + b1 (Eq. F2) 

a2 = 𝑓(z2) = 𝑓(𝑋 ∗ 𝑊1 + b1) (Eq. F3) 

z3 = a2𝑊2 = a2 ∗ 𝑓(𝑋 ∗ 𝑊1 + b1) (Eq. F4) 

z3 = a2𝑊2 + b2 = a2 ∗ 𝑓(𝑋 ∗ 𝑊1 + b1) + b2 (Eq. F5) 

𝑌 =  𝑓(z3) = (𝑓(a2 ∗ 𝑓(𝑋 ∗ 𝑊1 + b1) + b2) = z3) (Eq. F6) 

𝐽 =
1

𝑛
(𝑌 − Y)

2
=

1

𝑛
(z3 − Y)2 (Eq. F7) 



 

That actually makes sense, right? We have the same equation for the forward process 
that we had in the second chapter of the first document (LINK). 

We are ready to enter in the BackProp direction of our neural network. This is getting 
interesting, so let’s explain once the details with the example of the first back-
propagated error, and see how this process is basically repeated equally until we reach 
the beginning of our network. 

Figure 2.First Backward Propagation Step 

 

The idea we need to get from this comes as follows: 

First, we input our inputs z3 and y as the inputs to a function (COST) which is described 
in (Eq. F7. Their values are given in grey. Therefore, right at that moment we are able to 
calculate the local gradients. These are the partial derivatives of the current equation 
(we see them in black under and above the box). If we take (Eq. F7 and we derivate it, 
the result is (given that we have 1 time step only so n = 1): 

 

𝑑𝐽

𝑑𝑧3
= −

2

𝑛
· 𝑦 · (z3 − y) = −

2

1
· 0.8 · (0.5 − 0.8) =  0.48 

𝑑𝐽

𝑑𝑦
=

2

𝑛
· z3 · (z3 − y) =

2

1
· 0.5 · (0.5 − 0.8) =  −0.3 

 

Next, we always start a BackProp process with the local gradient of the function itself, 
which is obviously 1. After that, we want to propagate backwards that error to the 
responsible of the error committed. What we do is apply the chain rule (LINK) to 
decompose one derivative into simpler ones. Now if we take a look, we have solved a 
derivative we didn’t know what its value was, by splitting in into two derivatives that we 
actually now their values already! 

You must have realized that this first step is maybe not the most illustrative, as the 
derivative of the cost function by itself is 1, and therefore the chain rule seems like it’s 



not doing anything. However, it is going to help us when looking at any other step at the 
backward propagation process, like in Figure 3. There, we have taken as an illustration 
the process where we will apply an activation function to introduce the non-linearity in 
the system.  

Figure 3. Any Backward Propagation Step 

 

The activation function used in this illustration is the sigmoid function.  

Sigmoid function: 𝜎(𝑥) =  
1

1 + 𝑒−𝑥
 

Derivative of sigmoid function: 𝜎′(𝑥) = 𝜎(𝑥) · (1 − 𝜎(𝑥)) 

Repeating the same process, we have the input z2 which is being applied the sigmoid 
function to obtain a2. At that point, we can calculate the local gradient, and wait for the 
back-propagated error to come from the end of the network. 

Then, when it reaches, we have the 
𝑑𝐽

𝑑a2 which basically means ‘how much responsible 

of the value of J is a2’. And applying chain rule, we can determine how much responsible 
for that J is z2, the next on the line.  

To do so, we apply the same as for the previous example. We use the chain rule to 
express the gradient as a product of the local gradient and the error back-propagated 
until this point. Those to values are known and we can easily compute our intention 
then: 

 

Now ask yourself and try to answer the following question, why are we doing this? Why 
back-propagating the value of the J cost? We are jumping a little bit into the next chapter 
(4. Learning (LINK)). We want to know ‘how much responsible are the weights of the 
neurons to the error committed’, so we can adjust their values and make our network 

learn. So, in the end, we want to find the 
𝑑𝐽

𝑑𝑊1 and 
𝑑𝐽

𝑑𝑊2.  

𝑑𝐽

𝑑𝑎2
= 0.9 

𝑑𝐽

𝑑𝑧2
=

𝑑𝐽

𝑑𝑎2
·

𝑑𝑎2

𝑑𝑧2
= 0.9 ∗ 0.235 = 0.211 



Good, so now that we not the tools and the objectives, let’s develop are backward 
equations for our network friend!  

 

𝑑𝐽

𝑑𝑧3
= −= −

2

𝑛
· 𝑦 · (z3 − y) = 𝒕𝒐𝒑𝒅𝒊𝒇𝒇 (Eq. B1) 

𝑑𝐽

𝑑𝑎3𝑊2
=

𝑑𝐽

𝑑𝑧3
·

𝑑𝑧3

𝑑𝑎3𝑊2
= 𝒕𝒐𝒑𝒅𝒊𝒇𝒇 · 𝒍𝒐𝒄𝒂𝒍𝒅𝒊𝒇𝒇 = 𝑡𝑜𝑝𝑑𝑖𝑓𝑓 · 1 (Eq. B2) 

𝑑𝐽

𝑑𝑏2
=

𝑑𝐽

𝑑𝑧3
·

𝑑𝑧3

𝑑𝑏2
= 𝒕𝒐𝒑𝒅𝒊𝒇𝒇 · 𝒍𝒐𝒄𝒂𝒍𝒅𝒊𝒇𝒇 = 𝑡𝑜𝑝𝑑𝑖𝑓𝑓 · 1 (Eq. B3) 

𝑑𝐽

𝑑𝑎2
=

𝑑𝐽

𝑑𝑧3
·

𝑑𝑧3

𝑑𝑎2𝑊2
·

𝑑𝑎2𝑊2

𝑑𝑎2
= 𝒕𝒐𝒑𝒅𝒊𝒇𝒇 · 𝒘𝒂𝒚𝒉𝒆𝒓𝒆 · 𝒍𝒐𝒄𝒂𝒍𝒅𝒊𝒇𝒇

= 𝑡𝑜𝑝𝑝𝑑𝑖𝑓𝑓 · 1 · 𝑊2 = 𝑡𝑜𝑝𝑝𝑑𝑖𝑓𝑓 · 𝑊2 

(Eq. B4) 

𝒅𝑱

𝒅𝑾𝟐
=

𝑑𝐽

𝑑𝑧3
·

𝑑𝑧3

𝑑𝑎2𝑊2
·

𝑑𝑎2𝑊2

𝑑𝑊2
= 𝒕𝒐𝒑

𝒅𝒊𝒇𝒇
· 𝒘𝒂𝒚

𝒉𝒆𝒓𝒆
· 𝒍𝒐𝒄𝒂𝒍𝒅𝒊𝒇𝒇

= 𝑡𝑜𝑝𝑝
𝑑𝑖𝑓𝑓

· 1 · 𝑎2 = 𝑡𝑜𝑝𝑝
𝑑𝑖𝑓𝑓

· 𝑎2 

(Eq. B5) 

𝑑𝐽

𝑑𝑧2
=

𝑑𝐽

𝑑𝑧3
·

𝑑𝑧3

𝑑𝑎2𝑊2
·

𝑑𝑎2𝑊2

𝑑𝑎2
·

𝑑𝑎2

𝑑𝑧2
= 𝒕𝒐𝒑𝒅𝒊𝒇𝒇 · 𝒘𝒂𝒚𝒉𝒆𝒓𝒆 · 𝒍𝒐𝒄𝒂𝒍𝒅𝒊𝒇𝒇

= 𝑡𝑜𝑝𝑝𝑑𝑖𝑓𝑓 · 𝑊2 · 𝑓′(z2) 

(Eq. B6) 

𝑑𝐽

𝑑𝑋𝑊1
=

𝑑𝐽

𝑑𝑧3
·

𝑑𝑧3

𝑑𝑎2𝑊2
·

𝑑𝑎2𝑊2

𝑑𝑎2
·

𝑑𝑎2

𝑑𝑧2
·

𝑑𝑧2

𝑑𝑋𝑊1

= 𝒕𝒐𝒑𝒅𝒊𝒇𝒇 · 𝒘𝒂𝒚𝒉𝒆𝒓𝒆 · 𝒍𝒐𝒄𝒂𝒍𝒅𝒊𝒇𝒇

= 𝑡𝑜𝑝𝑝𝑑𝑖𝑓𝑓 · 𝑊2 · 𝑓′(z2) · 1 

(Eq. B7) 

𝑑𝐽

𝑑𝑏1
=

𝑑𝐽

𝑑𝑧3
·

𝑑𝑧3

𝑑𝑎2𝑊2
·

𝑑𝑎2𝑊2

𝑑𝑎2
·

𝑑𝑎2

𝑑𝑧2
·

𝑑𝑧2

𝑑𝑏1
= 𝒕𝒐𝒑𝒅𝒊𝒇𝒇 · 𝒘𝒂𝒚𝒉𝒆𝒓𝒆 · 𝒍𝒐𝒄𝒂𝒍𝒅𝒊𝒇𝒇

= 𝑡𝑜𝑝𝑝𝑑𝑖𝑓𝑓 · 𝑊2 · 𝑓′(z2) · 1 

(Eq. B8) 

𝑑𝐽

𝑑𝑋
=

𝑑𝐽

𝑑𝑧3
·

𝑑𝑧3

𝑑𝑎2𝑊2
·

𝑑𝑎2𝑊2

𝑑𝑎2
·

𝑑𝑎2

𝑑𝑧2
·

𝑑𝑧2

𝑑𝑏1
= 𝒕𝒐𝒑𝒅𝒊𝒇𝒇 · 𝒘𝒂𝒚𝒉𝒆𝒓𝒆 · 𝒍𝒐𝒄𝒂𝒍𝒅𝒊𝒇𝒇

= 𝑡𝑜𝑝𝑝𝑑𝑖𝑓𝑓 · 𝑊2 · 𝑓′(z2) · 𝑊1 

(Eq. B9) 

𝒅𝑱

𝒅𝑾𝟏
=

𝑑𝐽

𝑑𝑧3
·

𝑑𝑧3

𝑑𝑎2𝑊2
·

𝑑𝑎2𝑊2

𝑑𝑎2
·

𝑑𝑎2

𝑑𝑧2
·

𝑑𝑧2

𝑑𝑊1

= 𝒕𝒐𝒑
𝒅𝒊𝒇𝒇

· 𝒘𝒂𝒚
𝒉𝒆𝒓𝒆

· 𝒍𝒐𝒄𝒂𝒍𝒅𝒊𝒇𝒇

= 𝑡𝑜𝑝𝑝
𝑑𝑖𝑓𝑓

· 𝑊2 · 𝑓′(z2) · 𝑋 

(Eq. B10) 

There we go! We have done all the BackProp process and compute the gradients we are 
interested in so easy! Those are the values we will use to update the values for the 
weights and reduce the error for the next time. But now, let’s take a closer look and do 
one thing humans still do better than machines, let’s find patterns. 



3. Patterns in the computation 

As we saw in detail in Figure 2 and Figure 3, the backpropagation for every component 
of the global network consist basically in multiplying the gradient that receives from the 
end of the network by the local gradient. That’s the magic of AI and is that simple!  

Another pattern we see is how the different blocks we have work. In AI world, they have 
their own terminology, as follows: 

 Add Gates: 

In the forward pass, add gates gives the addition of the inputs as the output. 

In the backward pass, add gates are called distributors. Take a look at one of the pair of 
equations B2-B2 or B7-B8. They represent the BackProp process of each of the two add 
gates we have in the network. The local gradient for both of them is 1, that’s why we 
call them distributors. They just capture the gradient that comes to it, and pass it 
untouched to all of its inputs. 

 

 

Multiply Gates: 

In the forward pass, multiply gates gives the multiplication of the inputs as the output. 

In the backward pass, multiply gates are called switchers. Take a look at one of the pair 
of equation B4-B5 or B9-B10. They represent the BackProp process of each of the 
multiply gates in the network. The local gradient for both of them is the value of the 
other input, that’s why we call them switchers. 

 

 

Layers: 

In the forward pass, layers apply the function we have selected for them (the activation 
function) to the input to calculate the output. 



In the backward pass, layers just multiply its own derivative value to the incoming 
gradient to calculate the output gradient (also called bottom gradient). Take a look at 
equation 6. Two typical activation functions are sigmoid or tanh. 

 

 

Cost Calculators: 

In this particular case, we have applied a cost function to minimize the mean squared 
error. However, the architecture of this box and the values on it are going to be different 
depending on the application of the neural network. 

In this particular case then, it receives the output of the forward process of the inputs 
and compare it with what the value should be. After that, it returns the value of the 
derivative, what we have been calling top_diff. 

 

 

  



4. Conclusions 

We have seen how the graph representation of neural networks let us see easily how 
the backpropagation occurs, and how to easily compute the propagation using the chain 
rule in through the small components of the graph. 

There is just one last thing left that I would really encourage you to look at, especially 
now that you have reach this point. I will suggest you go to the next chapter (LINK) to 
take care about the dimensionality of the matrices during the backpropagation process, 
to understand where does all this transpose or scalar products between matrices come 
from. 

Can’t wait to see you there! 
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